X
How do I get paid? Learn about our new Secured Funds Program!
  Afficher le site en English, Español, ou Français
La billetterie solidaire
Créez un compte !  |  Identifiez-vous
 
Trouver un événement Créer votre événement Aide
 
California Section, ACS-Virtual Section Meeting- Thurs., March 28th, 2024 with Guest Speaker- Hee Jeung Oh,, PhD
Zoom
Partager cet événement :
Modalités d'inscription
Aucune date n'a été activée pour cet événement.

Événement

California Section, ACS-Virtual Section Meeting- Thurs., March 28th, 2024 with Guest Speaker- Hee Jeung Oh,, PhD
ABSTRACT:
Designing new polymer membranes with a set of previously unachievable transport properties will have an enormous impact on various applications, including energy-efficient separations, energy storage and health-related devices. The advancement of these technologies is dependent on polymer membranes which selectively transport only desired penetrants while maintaining chemical stability. Molecular transport in polymer membranes is greatly influenced by the chemical and morphological structures of polymers. Here two research projects are presented for designing new membranes using charged polymers for improved molecule separations. The transport mechanism in the polymer membranes is studied from the fundamental perspectives of polymer-penetrant interactions and templating diffusion pathways for selective transport of small molecules. First, solvent-free, melt processed ion-exchange membranes based on sulfonated polymers are presented for water purification and desalination. Most membranes currently used in industry are prepared by solvent processing using large volumes of hazardous solvents. Despite the negative environmental impact, solvent processing is the only method to form thin film membranes on the order of 10-200 nm thickness. In stark contrast to conventional solvent processing, robust ion-exchange membranes based on sulfonated polymers were prepared by solvent-free melt processing, for the first time. The transport of small molecules in resultant membranes is significantly affected by different membrane formation methods.
Second, designing nanostructured polymer membranes for a new emerging biomedical application, drug capture, to minimize the toxic side effects of cancer chemotherapy drugs, is discussed. Typically, more than 90% of the injected drug is not trapped in the target organ, causing systemic toxic side effects. We designed 3D printed biosponge absorbers for capturing toxic drugs downstream of tumors before they spread through the body.

BIO:
Hee Jeung Oh is an Assistant Professor of Chemical Engineering and Materials Science and Engineering at Penn State University. Oh lab designs multifunctional polymer membranes for separations. Specifically, the Oh lab studies the relationship between polymer chemistry, processing, structure, and transport properties for separation science, and explores the influence of a polymers chemical and physical structures on transport properties such as sorption, diffusion, permeation, and conduction of small molecules in polymers and polymer-based materials. These fundamental studies are critical for designing membranes for liquid, gas and vapor separations, energy storage, selective removal of unwanted molecules from various chemical streams, selective recovery of critical and precious elements, biomedical devices, controlled drug-delivery, and barrier materials for food and packaging. Dr. Oh earned her B.S. in Chemical Engineering from the Korea Advanced Institute of Science and Technology (KAIST). Dr. Oh completed her Ph.D. in Chemical Engineering working in Drs. Benny Freemans and Donald Pauls research groups at the University of Texas at Austin, exploring a variety of polymeric materials for membrane-based separation, with a particular emphasis on membranes for water purification, and focusing on transport of small molecules such as water and ions in polymer membranes. Dr. Oh first developed solvent-free, melt-processed, robust ion-exchange membranes based on sulfonated polymers, and evaluated water and salt permeation, sorption, and diffusion in the membranes. Her postdoctoral training, working in Dr. Nitash Balsaras research group at UC Berkeley, focuses on designing porous nanostructured polymers for energy storage, as well as a new emerging biomedical application, drug capture, to minimize toxic side effects of cancer chemotherapy drugs. She first designed and developed a 3D printed absorber for capturing chemotherapy drugs downstream of tumors before they spread through the body and cause the toxic side effects. Dr. Oh has been recognized in honors and awards including 3M Non-Tenured Faculty Award, Young Membrane Scientist Award from the North American Membrane Society (NAMS), Hanwha Non-Tenured Faculty Award, and the University of Texas Professional Development Award. She was invited to National Academy of Engineering (NAE)s Grainger Foundation Frontiers of Engineering (FOE) Symposium and was selected as one of the two recipients of the National Academy of Engineering (NAE)s Grainger Foundation Frontiers of Engineering (FOE) grants in 2023.

Adresse

Zoom

Fuseau horaire: America/Los_Angeles
Informations d'Accès en Ligne
Vous recevrez des instructions pour accéder le contenu digital de cet événement. Le moment et la manière dont ces instructions vous seront transmises sont déterminés par l'organisateur de l'événement. Pour garantir l'accès, utilisez une adresse courriel à jour et évitez de vous désabonner des notifications par courriel. Consultez notre Centre d'aide pour plus d'informations.

Catégories

Contact

Propriétaire : California Section, ACS
Sur BPT depuis : 23 Juin 2019
 
California Section ACS
calacs.org


Contactez-nous
Courriel
support@brownpapertickets.com
Téléphone
1-800-838-3006 (Temporairement Indisponible)
Ressources
Développeurs
Aide
Acheteurs de billets
Suivi de commande
Parcourir les événements
Points de vente
Organisateurs d'événements
Créer un événement
Tarifs
Services
Achat billets pré-imprimés
Salles et établissements
Découvrez des événements locaux
Recevez des notifications quotidiennes ou hebdomadaires par courriel sur les nouveaux événements et billets à prix réduit dans votre quartier.
Inscrivez-vous pour des événements locaux
Restez branché
Suivez-nous sur Facebook
Twitter
Suivez-nous sur Instagram
YouTube
Qui sommes-nous ?
L'utilisation de ce service est soumis aux Conditions d'utilisation, Politique de confidentialité et Politique sur les cookies de Brown Paper Tickets. Tous droits réservés. © 2000-2022 Mobile EN ES FR