X
How do I get paid? Learn about our new Secured Funds Program!
  Afficher le site en English, Español, ou Français
La billetterie solidaire
Créez un compte !  |  Identifiez-vous
 
Trouver un événement Créer votre événement Aide
 
A Virtual ICERM Public Lecture: More data, more problems - Double-dipping in statistics
ICERM, Brown University's Math Institute
Partager cet événement :
Mercredi 22 Sept 2021 18:00 - Mercredi 22 Sept 2021 19:00 | Gratuit


Événement

A Virtual ICERM Public Lecture: More data, more problems - Double-dipping in statistics
In recent years, the availability of huge amounts of data across virtually all fields has ushered in an entirely new way of thinking about and using data. The scientific method --- and classical statistics --- involves formulating a hypothesis, and then testing that (pre-specified) hypothesis on some data. However, as datasets have continued to grow in size, the goal of data generation has increasingly moved away from using data to test a pre-specified hypothesis. Instead, people use data to generate new hypotheses and then test those hypotheses on the same data. Unfortunately, classical statistical methods do not apply when the same data are used for hypothesis generation and hypothesis testing. In this talk, I'll show what can go wrong when people engage in this sort of "double-dipping". I will also present some solutions, using the new statistical framework of selective inference.

Daniela Witten is a professor of Statistics and Biostatistics at University of Washington, and the Dorothy Gilford Endowed Chair in Mathematical Statistics. She develops statistical machine learning methods for high-dimensional data, with a focus on unsupervised learning.

Daniela is the recipient of an NIH Director's Early Independence Award, a Sloan Research Fellowship, an NSF CAREER Award, a Simons Investigator Award in Mathematical Modeling of Living Systems, a David Byar Award, a Gertrude Cox Scholarship, and an NDSEG Research Fellowship. She is also the recipient of the Spiegelman Award from the American Public Health Association for a statistician under age 40 who has made outstanding contributions to statistics for public health, as well as the Leo Breiman Award for contributions to the field of statistical machine learning. She is a Fellow of the American Statistical Association, and an Elected Member of the International Statistical Institute.

Danielas work has been featured in the popular media: among other forums, in Forbes Magazine (three times) and Elle Magazine, on KUOW radio (Seattle's local NPR affiliate station), in a NOVA documentary, and as a PopTech Science Fellow.

Daniela is a co-author (with Gareth James, Trevor Hastie, and Rob Tibshirani) of the very popular textbook "Introduction to Statistical Learning". She was a member of the National Academy of Medicine (formerly the Institute of Medicine) committee that released the report "Evolution of Translational Omics".

Daniela completed a BS in Math and Biology with Honors and Distinction at Stanford University in 2005, and a PhD in Statistics at Stanford University in 2010.

Adresse

ICERM, Brown University's Math Institute

Fuseau horaire: America/New_York
Informations d'Accès en Ligne
Those with confirmed registrations who have provided a valid email address will receive Zoom credentials for joining this lecture 1 hour prior to the event.

Catégories

Contact

Propriétaire : ICERM
Sur BPT depuis : 14 Sept 2015
 
ICERM
icerm.brown.edu


Contactez-nous
Courriel
support@brownpapertickets.com
Téléphone
1-800-838-3006 (Temporairement Indisponible)
Ressources
Développeurs
Aide
Acheteurs de billets
Suivi de commande
Parcourir les événements
Points de vente
Organisateurs d'événements
Créer un événement
Tarifs
Services
Achat billets pré-imprimés
Salles et établissements
Découvrez des événements locaux
Recevez des notifications quotidiennes ou hebdomadaires par courriel sur les nouveaux événements et billets à prix réduit dans votre quartier.
Inscrivez-vous pour des événements locaux
Restez branché
Suivez-nous sur Facebook
Twitter
Suivez-nous sur Instagram
YouTube
Qui sommes-nous ?
L'utilisation de ce service est soumis aux Conditions d'utilisation, Politique de confidentialité et Politique sur les cookies de Brown Paper Tickets. Tous droits réservés. © 2000-2024 Mobile EN ES FR